Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong-Xu Guo, ${ }^{\text {a }}{ }^{\text {J Jian-Xin Chen, }}{ }^{\text {b }}$ Liu-Ming Yang ${ }^{\text {a }}$ and Zhi-Xing Lin ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou, Fujian 363000, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Fujian Normal University, Fuzhou, Fujian 350001, People's Republic of China

Correspondence e-mail:

guohongxu919@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.016 \AA$
R factor $=0.069$
$w R$ factor $=0.124$
Data-to-parameter ratio $=24.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(4-Ethyl-4,4'-bipyridinium- $\kappa \mathrm{N}^{\mathbf{4}^{\prime}}$)triiodocadmium(II)

In the title compound, $\left[\mathrm{CdI}_{3}\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2}\right)\right]$, the Cd^{2+} ion is coordinated by three I^{-}ions and by one N atom from an N -ethyl-4,4'-bipyridinium (EP) ligand in a distorted tetrahedral arrangement, with $\mathrm{Cd}-\mathrm{I}$ bond lengths in the range 2.708 (1)2.742 (1) \AA. In the EP ligand, the dihedral angle between the two pyridyl planes is $38.9(4)^{\circ}$.

Comment

In the last few years, the design and synthesis of inorganicorganic hybrid materials have been increasingly developed (Zhang et al., 2006). In this field, the halogens are a common terminal or bridging ligand for preparing a large range of complexes with rich coordination environments (Lobana \& Hundal, 2002). Many halogen-coordinated complexes containing Cu, Zn, Co and Mn have been reported (Li et al., 2004; Schneider et al., 2000; Espallargas et al., 2006; Eichhofer et al., 1997). As a heavy metal ion with a d^{10} configuration, Cd also exhibits a rich coordination chemistry. In $\mathrm{Cd}-\mathrm{I}-\mathrm{N}$ systems, although the $\left[\mathrm{CdI}_{2} \mathrm{~N}_{4}\right]$ (Hu et al., 2003), $\left[\mathrm{CdI}_{2} \mathrm{~N}_{3}\right]$ (Wang et al., 2005) and $\left[\mathrm{CdI}_{2} \mathrm{~N}_{2}\right]$ (Amoedo-Portela et al., 2003) polyhedra have been extensively studied, the $\left[\mathrm{CdI}_{3} \mathrm{~N}\right]$ tetrahedron is unreported, except for the compound (DMAPM)[Cd$(\mathrm{DMAP}) \mathrm{I}_{3}$] [DMAPM $=4-(N, N$-dimethylamino $)$-1-methylpyridinium and DMAP $=4$ - $(N, N$-dimethylamino) pyridine; Ren et al., 2003]. We report here the structure of the title Cdcoordinated complex, (I), with the Cd atom linked to three I atoms and one bipyridyl N atom.

(I)

The asymmetric unit of (I) consits of a mononuclear $\mathrm{Cd}^{\mathrm{II}}$ complex, in which the Cd site is tetracoordinated by three I^{-} ions and by one N atom from an N-ethyl-4,4'-bipyridinium (EP) ligand (Fig. 1). The Cd-I bond lengths [2.708 (1)$2.742(1) \AA$ are normal and comparable with those in $\left[\mathrm{Ni}\left(\mathrm{C}_{6} \mathrm{H}_{24} \mathrm{~N}_{6}\right]\left[\mathrm{CdI}_{4}\right]\right.$ (Sohail et al., 2006), whereas the $\mathrm{Cd}-\mathrm{N}$ bond distance $[2.338(9) \AA$] is slightly longer than that in $\left[\mathrm{Cd}(\mathrm{DMAP}) \mathrm{I}_{3}\right]^{-}[2.288$ (15) Å; Ren et al., 2003] (Table 1). In the EP ligand, the dihedral angle between the two pyridyl planes is $38.9(4)^{\circ}$.

Experimental

A mixture of $\mathrm{H}_{3} \mathrm{PO}_{4} \cdot 12 \mathrm{MoO}_{3} \cdot 30 \mathrm{H}_{2} \mathrm{O}(2.3657 \mathrm{~g}, 1 \mathrm{mmol}), \mathrm{CdI}_{2}$ $(0.4028 \mathrm{~g}, 1.1 \mathrm{mmol}), 4,4^{\prime}$-bipyridine $(0.1874 \mathrm{~g}, 1.2 \mathrm{mmol})$, ethanol

Received 30 August 2006
Accepted 1 September 2006
$(10 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ was heated at 423 K for 5 d . The autoclave was then cooled at a rate of $5 \mathrm{~K} \mathrm{~h}^{-1}$ to room temperature. Prismatic black crystals were isolated manually (yield 18.3% based on Cd), washed with water and ethanol, and dried at room temperature. The ligand EP in (I) is formed by 4,4'-bipyridyl and ethanol in an acid medium through ethylation; we believe this to be the first example of such a reaction. Analysis, calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{CdI}_{3} \mathrm{~N}_{2}$: C $21.22, \mathrm{H}$ 1.92, N 4.13%; found: C 21.29, H 2.01, N 4.16%.

Crystal data

$\left[\mathrm{CdI}_{3}\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2}\right)\right]$
$M_{r}=678.35$
Monoclinic, $P 2_{1} / n$
$a=7.5768(3) \AA \AA^{\circ} \mathrm{A}$
$b=12.9594(3) \AA$
$c=18.9013(4) \AA$
$\beta=97.960(4)^{\circ}$
$V=1838.05(9) \AA^{3}$

Data collection

Siemens SMART CCD area-
\quad detector diffractometer
ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Bruker, 1999$)$
$\quad T_{\min }=0.316, T_{\max }=0.893$
\quad (expected range $=0.190-0.537)$

Refinement

```
Refinement on }\mp@subsup{F}{}{2
R[\mp@subsup{F}{}{2}>2\sigma(\mp@subsup{F}{}{2})]=0.069
wR(F}\mp@subsup{F}{}{2})=0.12
S=1.06
4026 reflections
1 6 3 \text { parameters}
H-atom parameters constrained
```

$$
\begin{aligned}
& Z=4 \\
& D_{x}=2.451 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=6.21 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, black } \\
& 0.25 \times 0.15 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

8924 measured reflections 4026 independent reflections 2801 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$ $\theta_{\text {max }}=27.1^{\circ}$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0252 P)^{2}\right. \\
\quad+20.1922 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=1.93 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=-1.30 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\left(\AA,^{\circ}\right)$.

$\mathrm{Cd} 1-\mathrm{N} 1$	$2.338(9)$	$\mathrm{Cd} 1-\mathrm{I} 3$	$2.7165(12)$
$\mathrm{Cd} 1-\mathrm{I} 1$	$2.7077(12)$	$\mathrm{Cd} 1-\mathrm{I} 2$	$2.7415(12)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{I} 1$	$101.3(2)$	$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{I} 2$	$98.6(2)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{I} 3$	$108.4(2)$	$\mathrm{I} 1-\mathrm{Cd} 1-\mathrm{I} 2$	$120.77(4)$
$\mathrm{I} 1-\mathrm{Cd} 1-\mathrm{I} 3$	$115.86(4)$	$\mathrm{I} 3-\mathrm{Cd} 1-\mathrm{I} 2$	$109.27(4)$

Carbon-bound H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}$ $=0.93,0.97$ and $0.96 \AA$ for aromatic, methylene and methyl H atoms, respectively, and included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}(\mathrm{C})$ for aromatic/ methine and methylene H atoms, respectively. In the final difference Fourier synthesis, seven residual peaks in the range $0.85-1.93$ e \AA^{-3}

Figure 1
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.
were observed within $0.98 \AA$ of atom I3. The deepest hole was located $0.91 \AA$ from this atom.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

The authors are grateful for financial support from the Natural Science Foundation of Fujian Education Committee (grant No. JA05304) and Zhangzhou Normal University.

References

Amoedo-Portela, A., Carballo, R., Casas, J. S., Garciá-Martinez, E., SanchezGonzalez, A., Sordo, J. \& Vazquez-López, E. M. (2003). Polyhedron, 22, 1077-1083.
Bruker (1999). SMART (Version 5.624), SAINT (Version 6.02a) and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.
Eichhofer, A., Fenske, D. \& Fuhr, O. (1997). Z. Anorg. Allg. Chem. 623, 762768.

Espallargas, G. M., Brammer, L. \& Sherwood, D. (2006). Angew. Chem. Int. Ed. 45, 435-440.
Hu, C. H., Li, Q. \& Englert, U. (2003). CrystEngComm, 5, 519-529.
Li, G. H., Shi, Z., Liu, X. M., Dai, Z. M. \& Feng, S. H. (2004). Inorg. Chem. 43, 6884-6886.
Lobana, T. S. \& Hundal, G. (2002). J. Chem. Soc. Dalton Trans. pp. 2203-2206.
Ren, P., Qin, J. G., Du, F. Y. \& Liu, T. (2003). Inorg. Chem. Commun. 6, 13751377.

Schneider, O., Geratner, E., Weller, F. \& Dehnicke, K. (2000). Z. Anorg. Allg. Chem. 626, 827-829.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sohail, M., Molloy, K. C., Mazhar, M., Kociok-Köhn, G. \& Khosa, M. K. (2006). Acta Cryst. E62, m394-m396.

Wang, Y. T., Tong, M. L., Fan, H. H., Wang, H. Z. \& Chen, X. M. (2005). Dalton Trans. pp. 424-426.
Zhang, L. Y., Zhang, J. P., Lin, Y. Y. \& Chen, X. M. (2006). Cryst. Growth Des. 6, 1684-1869.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

